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Abstract—Near-memory processing (NMP), which places
lightweight processing units near the DRAM memory, has been
actively studied to speed up the execution of memory-intensive
applications by reducing the amount of data traffic between
the DRAM and the CPU. Sparse matrix-vector multiplication
(SpMV) is a representative memory-bound kernel used in various
applications such as graph analytics, scientific computing, and
machine learning. There are prior works to accelerate SpMV by
NMP employing a fixed partitioning scheme that hides random
access of SpMV using a parallel NMP core. However, due to
the various distributions of the matrix, the fixed partitioning of
prior works causes a load imbalance in which a sparse matrix is
unevenly allocated to processing units for NMP. To resolve this,
dynamic partitioning methods to distribute matrices and vectors
to the NMP processing units can be effective.

In this paper, we propose a dynamic partitioning algorithm
(DPA) that analyzes the distribution of non-zero elements in a
sparse matrix to classify it into three types (even distribution,
skewed distribution, and power-law distribution) and partitions
the matrix according to each distribution. Our proposed distri-
bution scheme alleviates load imbalance by up to 73% when
compared to static distribution schemes, and such improvement
achieves an average speed-up 1.37× (up to 1.84×) over the NMP
architecture with static distribution schemes.

Index Terms—Sparse Matrix-Vector Multiplication, Near-
Memory Processing, Dynamic Partitioning,

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an important
kernel used in various applications such as graph analytics,
scientific computing, and machine learning [1]–[7]. SpMV is
regarded as a memory-bound operation due to the following
reasons: (i) a sparse matrix may have the size from tens
of kilobytes to hundreds of megabytes and it has to be
transferred from memory to the CPU for processing, and (ii)
distribution of non-zero elements in the input sparse matrix
and access patterns to the input vector are often irregular
leading to a low spatial locality [8]–[11]. To efficiently handle
memory-bound operations, including SpMV, many studies
have proposed processing-in-memory (PIM) and near-memory
processing (NMP) architectures [8], [9], [12]–[15]. Some
of these studies proposed PIM architectures on 3D stacked
memory structures such as High-bandwidth Memory (HBM)

and Hybrid Memory Cube (HMC) [12], [14], [16], [17]. For
instance, [13] proposed a method to process irregular sparse
data in parallel using SIMD, and [12] proposed a partitioning
method to alleviate load imbalance. However, the 3D-stacked-
memory-based PIM architecture is a high-cost solution in
terms of power consumption and latency, making it difficult
to be adopted in commercial computer systems. Due to this
reason, DIMM-based NMP is considered an efficient and
practical solution [13], [15].

Most existing studies on partitioning input vectors and ma-
trices for SpMV operations and storing into multiple memory
ranks employ a static partitioning scheme [8], [12], [18].
The partitioning enables parallel accesses to multiple memory
ranks to improve the access latency, especially when irregular
memory accesses cause long latency [13], [15], [19], [20].
However, most of these studies do not try to resolve the load-
balancing issue meaning that data may be unevenly distributed
across multiple memory segments. In many DIMM-based
NMP implementations, each rank is equipped with its own
processing element to carry out some computation. When
the data are unevenly distributed across multiple ranks, some
processing elements may stay idle while others are very busy,
leading to insufficient exploitation of parallel processing (i.e.,
load imbalance). This load imbalance often occurs in real
SpMV applications. Fig. 1 shows the load-imbalance degree
found in some applications of a benchmark suite [10]. The
y-axis shows the load-imbalance degree, which is the ratio of
the number of non-zero elements of the two partitions when
the sparse matrix is divided vertically into two equal-sized
partitions. If the degree is 1, we can say that the matrix is
balanced. As shown in Fig. 1, matrices in some applications
have a significantly-unbalanced distribution (average of 3.53).

In this paper, we propose a new data partitioning scheme
called dynamic partitioning algorithm (DPA), which evenly
distributes the matrix partitions into multiple ranks to alleviate
the performance reduction due to load imbalance. DPA parti-
tions a matrix into multiple groups with the same column range
and classifies the sparse matrix according to the degree of load
imbalance of each partition. Based on the distribution type,



Fig. 1. Load imbalance analysis of four programs in an SpMV bench-
mark [10].

DPA tries to find a better partitioning by subdividing a partition
into multiple row units rather than column units. Next, we
suggest an operation flow of the NMP system that performs
SpMV based on the DPA mapping scheme. The proposed
architecture achieves an average performance improvement
of 1.72× (at best 1.96×) compared to the system without
partitioning.

II. BACKGROUND

A. SpMV & CSR

SpMV is a key computation that is frequently included in
various applications such as graph analytics [2] and machine
learning [3]. The input sparse matrix in SpMV operations is
commonly represented by a compressed format where only the
non-zero elements are represented. One of the commonly used
compression formats for sparse matrices is a format called
compressed sparse row (CSR). Fig. 2 illustrates how a sparse
matrix is compressed using the CSR format.

The N th value in Row offset is the cumulative count
of non-zero elements up to the N th row, and the Pair of
column and value stores the column index of a non-
zero element and the value of the non-zero element. When
carrying out an SpMV operation, the sparse matrix in the CSR
format will be multiplied by an input vector without being
decompressed into the original form. This paper assumes that
all the input sparse matrices are compressed using the CSR
format.

B. Parallel NMP architecture for SpMV operations

Fig. 3 shows the multi-rank NMP architecture of this paper
and shows roughly how a compressed matrix in the CSR

Fig. 2. How to compress a sparse matrix into a CSR format

Fig. 3. An architecture for parallel NMP of SpMV operations

format will be used to carry out SpMV. Each rank has its own
processing unit called NMP core. We use a similar method
in [8] to carry out an SpMV operation when the matrix is
compressed using the CSR format as follows. 1⃝ Each NMP
core loads an input vector and the row offset vector. 2⃝ After
loading the pair of (column, value), each NMP core carries
out a multiplication between the input vector and the non-
zero values of the compressed sparse matrix. 3⃝ Each NMP
core transfers the output to the host CPU after computing a
partial sum. 4⃝ The host CPU merges all the received partial
sums to get the final output vector.

III. PROPOSED METHOD

A. Dynamic Partitioning Algorithm

This section describes the proposed method called dynamic
partitioning algorithm (DPA). Partitioning is a method for
dividing the input matrix and the input vector and storing them
into different memory segments so that they can be loaded
to the processing units in parallel [8], [12], [15]. There are
two ways to partition the input matrix and the input vector:
static partitioning and dynamic partitioning. Static partitioning
means the number of partitions is predetermined, and typically,
the size of each partition is the same [8], [12], [18]. On
the other hand, dynamic partitioning may apply a different
partitioning method when sparse matrices and input vectors
are saved in different ranks. If the sparse matrix has an irreg-
ular and unbalanced distribution of non-zero elements, static
partitioning may suffer performance degradation due to load
imbalance [12]. To apply the most appropriate partitioning
method according to the degree of load imbalance of the input
sparse matrix, DPA first divides the matrix into four partitions
of equal size and classifies the sparse matrix according to
the load imbalance degree of each partition. The types of
distribution are as follows:



Fig. 4. The DPA method

Fig. 5. GCSR format

(i) Even distribution: The number of non-zero elements in
each partition is about the same.

(ii) Skewed distribution: There is at least one partition that
has a significantly different number of non-zero elements from
the others.

(iii) Power-law distribution: There is at least one partition
where the percentage of non-zero elements is above 60%.
Dynamic Partitioning Method: Fig. 4 shows examples of
dynamic partitioning for each distribution. A to D and a to
d are four partitions of the sparse matrix and those of the
input vector of equal size, respectively. The ratio represents
the percentage of non-zero elements in each partition. DPA
sorts the partitions according to the ratios and maps a partition

Algorithm 1: grouping&mapping
1 Input: GCSR rowoffset[0:4][], GCSR pair[0:4][], Gnnz[0:4],

vec[0:numRows-1], power-law flag
2 Output: write operations

/*Generating Group consists of vec, GCSR offset and
pair

3 for i = 0 to 4 do
4 Group[i].vec, Group[i].offset, Group[i].pair
5 ← partitioned vec, GCSR rowoffset[i], GCSR pair[i]

/*Ordering group and finding rank number to map each
group

6 if flag = 1 then
/*Ordering Gnnz and group index

7 order Gnnz[] ← ordering Gnnz []
8 order group[] ← group index based on code 7

/*num_Rx: number of data in rank x
9 num R0 , num R1 ← 0

/*First ordered group is mapped to R0
10 num R0 ←order Gnnz[0]
11 map R[0] ← 0
12 for i = 1 to 4 do
13 if num R0 ≥num R1 then
14 num R1 ←order Gnnz[i]
15 map R[i] ← 1

16 else
17 num R0 ←order Gnnz[i]
18 map R[i] ← 0

19 else
20 except for group 4, do like codes 6-18

/*mapping group into each rank
21 for j = 0 to length of map R[] do
22 if map R[j] = 0 then
23 write 16words of group[] according to order group[]

sequentially R0

24 else
25 write 16words of group[] according to order group[]

sequentially R1

group of the sparse matrix and the input vector to a rank. In
this example, we assume that there are two ranks, so a partition
group is mapped to either the first rank (R0) or the second rank
(R1). Fig. 4 (a) shows the process of partitioning and mapping
in the even distribution case, in which case, a partition group
is alternately stored in R0 and R1. In the case of skewed
distribution, as shown in Fig. 4 (b), the order of mapping
changes according to the ratios of each matrix partition. If
static partitioning is used to store each partition into two ranks
evenly in the case of Fig. 4 (b), the ratio of the number of
non-zero elements of R0 and R1 will be 43 vs. 57. However, if
DPA is applied, the ratio will be 46 vs. 54, mitigating the load
imbalance by 1.12×. Fig. 4 (c) shows a case where the ratio of
non-zero elements is higher than 60% when the matrix is ini-
tially partitioned into four partitions (Power-law distribution).
In this case, DPA conducts an additional partitioning on the
last partition, splitting it into two sub-partitions of equal size.
During this process, the vector d is duplicated and included
in both sub-partition groups because these sub-partitions may
be mapped to a different rank. Duplicating a vector segment
does not cause any significant overhead because the size of
a segment of an input vector is typically small. After this
additional partitioning, sorting and mapping are iterated with
the updated set of partitions as in Fig. 4 (a) and (b). If a static



Fig. 6. Overall execution flow

partitioning scheme is adopted in case of Fig. 4 (c), the ratio
of the number of non-zero elements in R0 and R1 will be 27
vs. 73, which means the degree of load imbalance is 2.21×
bigger than the case where DPA is applied (45 vs. 55).
Algorithm: In DPA, the sparse matrix is compressed using
the CSR format. Once the matrix is partitioned into multiple
partitions, the CSR representation should be modified accord-
ingly. We call this modification Group CSR (GCSR). Fig. 5
shows the GCSR format when the matrix is partitioned into
two groups. The GCSR row offset is additionally generated for
each group. The GCSR pair represents a pair of the column
index and the non-zero value.

When the matrix is compressed using the GCSR format,
the number and the distribution of non-zero elements can be
estimated by the row offset value. As described in Algorithm
1, the partitioned matrices are represented using GCSR, and
the input vector is also partitioned accordingly, and a group
of a matrix partition and a related vector partition is mapped
to a rank. First, DPA generates Group[] structure consisting
of matrix partitions in GCSR and input vector partitions
(described in lines 3-5). The partitions in Group[] are sorted.
(described in lines 6-20). Lines 6-18 describe the sorting
method when the power-law flag is on. If the power-law flag is
on, additional partitions will be generated. The updated set of
partition groups are sorted in order_group[] according to
the order_Gnnz where Gnnz represents the number of non-

zero values in each group. (described in line 7 and 8) In lines
9-18, steps to determine map_R[] using order_Gnnz[] and
order_group[] are shown. The map_R[] array will store the
mapping information between a partition group and a rank.

B. Execution flow of the NMP architecture with DPA

Fig. 6 describes the overall execution flow of the NMP
system when DPA is applied. Let’s suppose that the input
sparse matrix has a distribution of non-zero elements that
satisfies the power-law distribution criterion. Fig. 6 (a) and (b)
show a partitioning of the sparse matrix and the input vector.
In Fig. 6 (c) and (d), each partition group is mapped to a rank
after ordering and sent to a NMP core for SpMV operation.
A detailed description of these steps is given as follows.
Partitioning & Grouping: Fig. 6 (a) and (b) illustrate this
step. Initially, a sparse matrix and an input vector are divided
equally. Columns 6 and 7 of the matrix are further divided into
sub-partitions row-wisely because more than 60% of the total
non-zeros belong to columns 6 and 7, so Group 4 and Group
5 are created as described in Fig. 6 (b). In this case, groups
4 and 5 have the duplicated input vector (G and H). After the
grouping (Fig. 6 (b)), each group consists of an input vector
partition and a sparse matrix partition in the GCSR format.
Mapping: Fig. 6 (c) illustrates this step. After the partitioning,
partitions are sorted according to the percentage of the non-
zero elements in each partition. Next, they are mapped to a



TABLE I
EVALUATED SYSTEM CONFIGURATION

Memory FCFS, 64 entry request queueController
Memory

row (15b) ∥ column (7b) ∥ bank a (2b) ∥ bankg(2b) ∥ rank (1b)Mapping
Scheme
Main 32 Gb device, x8 DDR4-2400, 1 channel,
Memory 2 rank, 4 banks/rank, 64 K rows/bank, 1 KB page

certain rank one by one. As shown in Fig. 6 (c), groups 4 and 5
are first mapped because they have the most non-zero values,
and the rest of the partitions will be mapped to appropriate
ranks by the DPA.
Parallel processing: Fig. 6 (d) shows an example of the
parallel processing of the NMP architecture. Each rank has
its own NMP core. An NMP core consists of a vector ALU,
a queue for the output vector (out Q), a queue for matrix
(mat Q), an input buffer, and a memory controller. The input
vector is first loaded into the input buffer. Subsequently, the
matrix values in GCSR are loaded into mat Q and vector
ALU will carry out multiplications between the input vector
and the load matrix values. The multiplication result is stored
to the corresponding rank using out Q. Eventually, a merge
operation of all the partial sums is performed by the CPU to
complete an SpMV operation.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed method, a
DRAM simulator called Ramulator [21] is used with some
necessary modifications. Table I shows the system config-
uration used in the evaluation. A DDR4 memory module
with two ranks is used. We compare our proposed idea with
two other NMP models: one without partitioning (baseline)
and the other with static partitioning. For static partitioning,
two different numbers of partitions are tested: two partitions
and four partitions. They will be called Group-2 and Group-
4, respectively. We extract each memory trace based on the
memory mapping method described in Table I and provide
these traces to the modified Ramulater as inputs to evaluate
the performance.

We evaluate the performance of our proposed method with
respect to various sparse matrices in a benchmark suite called
SuiteSparse [10]. For fair evaluation, matrices with various dis-
tributions (even distribution, skewed distribution, and power-
law distribution) are selected, and Table II summarizes the
detailed information of the selected matrices, including the
degree of load imbalance.

TABLE II
BENCHMARK

benchmark distribution rows nnz density imbalance
xenon2(xe) even 157,464 3,866,688 1.56 ×10−4 0.00

web-Google (wg) skewed 916,428 5,105,039 6.10 ×10−6 0.14
delaunay-n19(dn) skewed 524,288 3,145,646 5.4 ×10−8 0.67

wiki-Talk-temporal(wtt) skewed 1,140,149 3,309,592 2.55 ×10−6 1.69
com-Youtube(cmb) power-law 1,134,890 5,975,248 4.64 ×10−6 5.79

soc-Slashdot0902(ss) power-law 82,168 948,464 1.4 ×10−4 5.96

V. EXPERIMENTAL RESULT

A. Performance

Fig. 7 summarizes the results of comparing the performance
of DPA with those of the others. The compared systems are
an NMP architecture without partitioning (baseline) and NMP
architectures with two different static partitioning methods
(Group-2 and Group-4). For the baseline case, input vectors
and matrices are first divided by the size of one cache line
(64 b) [22] and they are mapped to a rank alternately. The
performance advantage of DPA compared with the baseline
is up to 1.96×, and the average is 1.72×. When compared
to the static partitioning methods, DPA achieves speedups of
up to 1.84× and on average 1.37× compared with Group-
2. Meanwhile, the Group-4 method is almost equivalent to
DPA when no partition satisfies the power-law distribution
criterion. Consequently, in the case of benchmark xe, no
significant performance differences are observed among all the
partitioning methods because the matrix has evenly distributed
non-zero elements. On the contrary, in the case of cmb and
ss, significant performance differences are exhibited because
distributions of multiple matrix partitions correspond to the
power-law distribution. As a result, DPA achieves up to 1.17×
and on average 1.15× speedups over Group-4 in the case of
benchmarks where matrices have power-law distributions.

Fig. 7. Speedups of the NMP system with DPA over the other compared
systems

Fig. 8. Load imbalance of DPA compared to static partitioning schemes
(Group-2 and Group-4)



B. Load Imbalance

Fig. 8 describes the evaluation result of the load imbalance
degree of DPA compared to the other partitioning methods.
DPA reduces the load imbalance degree by an average of
74% and 38% compared to Group-2 and Group-4, respectively.
The reduced degree of load imbalance is presumably the main
reason why DPA achieves the speedups shown in Fig. 7.

VI. CONCLUSION

Near-memory processing is known to be an effective so-
lution to speed up the execution time of memory-bound
applications. Sparse matrix-vector multiplication (SpMV) is a
memory-bound operation because it has to deal with matrices
of huge size. Prior works have proposed various types of
partitioning methods for near-memory parallel processing of
SpMV. In this paper, we proposed a new dynamic partitioning
method for near-memory parallel processing of SpMV. When
there are multiple ranks and each rank has its own processing
unit, partitioning the input sparse matrix and the input vector
and mapping them evenly to multiple ranks will be important
to fully exploit the parallel processing capability. Since many
sparse matrices have uneven and irregular distributions of non-
zero elements, static partitioning cannot handle the situation
where the input matrices have diverse forms of distribution.
Therefore, a significantly unbalanced mapping may occur.
Our proposed method, dynamic partitioning algorithm (DPA),
applies a dynamic partitioning scheme according to the various
distributions of nonzero elements in the input sparse matrix.
Experimental results show that DPA achieves speedups of on
average 1.72× over the system where no partitioning is applied
and on average 1.31× over the static partitioning.
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